Mission Build an open, modular AI‑trading stack that can reason over heterogeneous data (market, on‑chain, news) and act safely on Solana & other venues via the Model Context Protocol (MCP).
1 High‑Level Value Proposition
Challenge
Solution (Trade Mind)
Tool + data fragmentation
Unified context through MCP hub & client SDKs
Slow manual research
Autonomous, iterative Research Agent with planning → search → reflection
Fragile strategies
Pluggable Strategy Engine with back‑test & on‑chain simulation
Hidden tail‑risk
Rule‑ & ML‑based Risk Control at pre‑trade & post‑trade layers
Ops overhead
Container‑first dev‑ops, auto‑scaling executors, Solana program registry
# reflection.py
from sklearn.linear_model import LinearRegression
def log_episode(trade, outcome):
db.insert("episodes", {**trade, **outcome})
def retrain():
df = db.read("episodes")
X = df[["signal", "volatility"]]
y = df["pnl"]
model = LinearRegression().fit(X, y)
model.save("models/pnl_reg.pkl")
10 Autonomous Research Pipeline
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
TEMPLATE = "You are a crypto researcher… {question}"
llm = OpenAI(temperature=0)
prompt = PromptTemplate.from_template(TEMPLATE)
chain = LLMChain(llm=llm, prompt=prompt)
q = "What are the catalysts for SOL in the next 3 months?"
raw_answer = chain.run(q)
print(raw_answer)
11 Deployment Topologies
Single‑host Lab – Docker‑Compose with mcp-server, orchestrator, strategy, db.
Hybrid Cloud – MCP servers next to data sources; stateless client hosted in Lambda / Cloud Run.
Fully Decentralised – MCP frame relayed through Solana program for on‑chain audit trail.
12 Extensibility Roadmap
Plug‑in Solana program registry – publish strategy hashes + proofs.
zk‑Rollup risk attestations – provide cryptographic guarantees.
Multi‑model cockpit – ensemble GPT‑4o + local Llama 3.